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Agenda

1. What is bilevel optimization anyway?

2. How do you solve a linear bilevel problem?

3. What to do if you have an MINLP in the lower level?

4. An (in my opinion) important open problem
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I hope in 2 hours, you want to read …

A Survey on Mixed-Integer Programming Techniques in Bilevel Optimization
In: EURO Journal on Computational Optimization. 2021

Jointly with Thomas Kleinert, Martine Labbé, and Ivana Ljubic

A Gentle and Incomplete Introduction to Bilevel Optimization
Publicly available lectures notes

Jointly with Yasmine Beck
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What is bilevel optimization anyway?



“Usual” single-level problems

min
x∈Rn

f (x)

s.t. g(x) ≥ 0

h(x) = 0

• only one objective function f
• one vector of variables x
• one set of constraints g and h

This models a situation in which a single decision maker takes all decisions,
i.e., decides on the variables of the problem.

Very often, that’s appropriate:

• a single dispatcher controls a gas transport network
• a single investment banker decides on the assets in a portfolio
• a single logistics company decides on its supply chain
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Often, life’s different

• Many situations in our day-to-day life are different
• Often:

• A decision maker makes a decision …
• … while anticipating the (rational, i.e., optimal) reaction of another decision maker
• The decision of the other decision maker depends on the first decision

• Thus: the outcome (or in more mathematical terms, the objective function and/or feasible set)
depends on the decision/reaction of the other decision maker

Formalizing this situation leads to hierarchical or bilevel optimization problems
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Informal example: Pricing

• A very rich class of applications of bilevel optimization
• First decision maker (leader)

• decides on a price of a certain good
(or maybe on different prices for multiple goods)

• goal: maximize revenue from selling these goods

• Second decision maker (follower)
• decides on purchasing the goods of the leader to generate some utility

Thus, …

• the leader’s decision depends on the optimal reaction of the follower

• the decision of the follower depends on the (pricing) decisions of the leader
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A bit more formal, please

Definition (Bilevel optimization problem)

A bilevel optimization problem is given by

min
x∈X, y

F(x, y)

s.t. G(x, y) ≥ 0

y ∈ S(x)

S(x): set of optimal solutions of the x-parameterized problem

min
y∈Y

f (x, y)

s.t. g(x, y) ≥ 0
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A bit more formal, please … continued

min
x∈X, y

F(x, y)

s.t. G(x, y) ≥ 0

y ∈ S(x)

… and …

S(x) = argmin
y∈Y

{f (x, y) : g(x, y) ≥ 0}

Wording

• First problem: so-called upper-level (or
the leader’s) problem

• Second Problem is the so-called
lower-level (or the follower’s) problem

• Both problems are parameterized by
the decisions of the other player

• x ∈ Rnx : upper-level variables
• decisions of the leader

• y ∈ Rny : lower-level variables
• decisions of the follower
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A bit more formal, please … continued

min
x∈X, y

F(x, y)

s.t. G(x, y) ≥ 0

y ∈ S(x)

… and …

S(x) = argmin
y∈Y

{f (x, y) : g(x, y) ≥ 0}

Functions and dimensions

• Objective functions
• F, f : Rnx × Rny → R

• Constraint functions
• G : Rnx × Rny → Rm
• g : Rnx × Rny → R`

• The sets X ⊆ Rnx and Y ⊆ Rny
are typically used to denote
integrality constraints.

• Example: Y = Zny makes the lower-level
problem an integer program
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A bit more formal, please … continued

min
x∈X, y

F(x, y)

s.t. G(x, y) ≥ 0

y ∈ S(x)

… and …

S(x) = argmin
y∈Y

{f (x, y) : g(x, y) ≥ 0}

Definition

1. We call upper-level constraints
Gi(x, y) ≥ 0, i ∈ {1, . . . ,m}, coupling
constraints if they explicitly depend on
the lower-level variable vector y.

2. All upper-level variables that appear in
the lower-level constraints are called
linking variables.
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Optimal value function

reformulation

Instead of using the point-to-set mapping S …

one can also use the so-called optimal-value function

ϕ(x) := min
y∈Y
{f (x, y) : g(x, y) ≥ 0}

and re-write the bilevel problem as

min
x∈X,y∈Y

F(x, y)

s.t. G(x, y) ≥ 0, g(x, y) ≥ 0

f (x, y) ≤ ϕ(x)
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Shared constraint set, bilevel feasible set, inducible region

Definition

The set
Ω := {(x, y) ∈ X × Y : G(x, y) ≥ 0, g(x, y) ≥ 0}

is called the shared constraint set.

Its projection onto the x-space is denoted by

Ωx := {x : ∃y with (x, y) ∈ Ω} .

Definition

The set
F := {(x, y) : (x, y) ∈ Ω, y ∈ S(x)}

is called the bilevel feasible set or inducible region.
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High-point relaxation

Definition

The problem of minimizing the upper-level objective function over the shared constraint set, i.e.,

min
x,y

F(x, y)

s.t. (x, y) ∈ Ω,

is called the high-point relaxation (HPR) of the bilevel problem.

Remark

• The high-point relaxation is identical to the original bilevel problem except for the
constraint y ∈ S(x), i.e., except for the lower-level optimality.

• Thus, it is indeed a relaxation.
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Pricing revisited

• First bilevel pricing problem with linear constraints, linear upper-level objective and bilinear
lower-level objective: Bialas and Karwan (1984)

• Here: a more general version taken from Labbé et al. (1998)

max
x,y=(y1,y2)

x>y1

s.t. Ax ≤ a

y ∈ argmin
ȳ

{
(x + d1)>ȳ1 + d>2 ȳ2 : D1ȳ1 + D2ȳ2 ≥ b

}
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x,y=(y1,y2)

x>y1

s.t. Ax ≤ a

y ∈ argmin
ȳ

{
(x + d1)>ȳ1 + d>2 ȳ2 : D1ȳ1 + D2ȳ2 ≥ b

}

• Vector y of lower-level variables is partitioned into two sub-vectors y1 and y2, called plans,
that specify the levels of some activities such as purchasing goods or services

• Upper-level player influences the activities of plan y1 through the price vector x that is
additionally imposed onto y1

• Goal of the leader is to maximize her revenue given by x>y1
• Price vector x is subject to linear constraints that may, among others, impose lower and upper
bounds on the prices
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ȳ

{
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ȳ

{
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Pricing revisited

max
x,y=(y1,y2)

x>y1

s.t. Ax ≤ a

y ∈ argmin
ȳ

{
(x + d1)>ȳ1 + d>2 ȳ2 : D1ȳ1 + D2ȳ2 ≥ b

}
• The vectors d1 and d2 represent linear disutilities faced by the lower-level player
when executing the activity plans y1 as well as y2

• d2 may also encompass the price for executing the activities not influenced by the leader
• These activities may, e.g., be substitutes offered by competitors for which prices are known and fixed

• The lower-level player determines his activity plans y1 and y2 to minimize the sum of total
disutility and the price paid for plan y1 subject to linear constraints

• To avoid the situation in which the leader would maximize her profit by setting prices to infinity
for these activities y1 that are essential, one may assume that the set {y2 : D2y2 ≥ b} is
non-empty
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An Academic and Linear Example (Kleinert 2021)

Upper-level problem

min
x,y

F(x, y) = x + 6y

s.t. − x + 5y ≤ 12.5

x ≥ 0

y ∈ S(x)

Lower-level problem

min
y

f (x, y) = −y

s.t. 2x − y ≥ 0

− x − y ≥ −6

− x + 6y ≥ −3

x + 3y ≥ 3
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An Academic and Linear Example (Kleinert 2021)

x

y

1 2 3 4 5 6

1

2

3

4

f

F
( 37 ,

6
7 ) (3, 0)

• Shared constrained set: gray area

• Green and red lines: nonconvex set of
optimal follower solutions
(lifted to the x-y-space)

• Green lines: Nonconvex and
disconnected bilevel feasible set of the
bilevel problem
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An Academic and Linear Example (Kleinert 2021)

x

y

1 2 3 4 5 6

1

2

3

4

f

F
( 37 ,

6
7 ) (3, 0)

1. The feasible region of the follower
problem corresponds to the gray area.

2. The follower’s problem—and therefore
the bilevel problem—is infeasible for
certain decisions of the leader, e.g.,
x = 0.

3. The set {(x, y) : x ∈ Ωx, y ∈ S(x)}
denotes the optimal follower solutions
lifted to the x-y-space, and is given by
the green and red facets.

4. This set is nonconvex!
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An Academic and Linear Example (Kleinert 2021)

x

y

1 2 3 4 5 6

1

2

3

4

f

F
( 37 ,

6
7 ) (3, 0)

5. The single leader constraint (dashed
line) renders certain optimal responses
of the follower infeasible.

6. The bilevel feasible region F
corresponds to the green facets.

7. Thus, the feasible set is not only
nonconvex but also disconnected.

8. The optimal solution is (3/7, 6/7) with
objective function value 39/7.

9. In contrast, ignoring the follower’s
objective, i.e., solving the high-point
relaxation, yields the optimal
solution (3, 0) with objective function
value 3. Note that the latter point is not
bilevel feasible.
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Independence of irrelevant constraints (Kleinert et al. 2021; Macal and Hurter 1997)

min
x,y∈R

x

s.t. y ≥ 0.5x + 1, x ≥ 0

y ∈ argmin
ȳ∈R

{ȳ : ȳ ≥ 2x − 2, ȳ ≥ 0.5}

Optimal solution: (2, 2)

y

x
1 2 3

1

2

3

leader

follower
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Independence of irrelevant constraints (Kleinert et al. 2021; Macal and Hurter 1997)

• Strengthening ȳ ≥ 0.5 in the lower-level
problem using y ≥ 0.5x + 1 of the
upper-level problem

• This yields the minimum value of
0.5x + 1 is 1 due to x ≥ 0

• New bound of ȳ is ȳ ≥ 1

• High-point relaxation stays the same

min
x,y∈R

x

s.t. y ≥ 0.5x + 1, x ≥ 0,

y ∈ argmin
ȳ∈R

{ȳ : ȳ ≥ 2x − 2, ȳ ≥ 1},

Optimal solution: (0, 1) 6= (2, 2)

y

x
1 2 3

1

2

3

leader

follower

y

x
1 2 3

1

2

3

leader

follower
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A Brief History of Complexity Results

• Jeroslow (1985): hardness general multilevel models

• Corollary: NP-hardness of the LP-LP bilevel problem
• Hansen et al. (1992): LP-LP bilevel problems are strongly NP-hard

• reduction from KERNEL

• Vicente et al. (1994): even checking whether a given point is a local minimum of a bilevel
problem is NP-hard

23



How do you solve a linear bilevel
problem?



Using optimality conditions

Most classic approach to obtain a single-level reformulation:

Exploit optimality conditions for the lower-level problem

• These optimality conditions need to be necessary and sufficient

• This is usually only possible for convex lower-level problems
that satisfy a reasonable constraint qualification
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An LP-LP Bilevel Problem

• Let’s keep it simple: KKT reformulation of an LP-LP bilevel

• Consider

min
x,y

c>x x + c>y y

s.t. Ax + By ≥ a,

y ∈ argmin
ȳ

{
d>ȳ : Cx + Dȳ ≥ b

}
• Data: cx ∈ Rnx , cy,d ∈ Rny , A ∈ Rm×nx , B ∈ Rm×ny , and a ∈ Rm as well as C ∈ R`×nx , D ∈ R`×ny ,
and b ∈ R`
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KKT reformulation of LP-LP bilevel problems

min
x,y

c>x x + c>y y

s.t. Ax + By ≥ a

y ∈ argmin
ȳ

{
d>ȳ : Cx + Dȳ ≥ b

}

Lower-level problem can be seen as the x-parameterized linear problem

min
y

d>y s.t. Dy ≥ b− Cx

Its Lagrangian function is given by

L(y, λ) = d>y − λ>(Cx + Dy − b)
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KKT reformulation of LP-LP bilevel problems

The KKT conditions of the lower level are given by …

• dual feasibility
D>λ = d, λ ≥ 0

• primal feasibility
Cx + Dy ≥ b

• and the KKT complementarity conditions

λi(Ci·x + Di·y − bi) = 0 for all i = 1, . . . , `

27



KKT reformulation of LP-LP bilevel problems

min
x,y,λ

c>x x + c>y y

s.t. Ax + By ≥ a, Cx + Dy ≥ b

D>λ = d, λ ≥ 0

λi(Ci·x + Di·y − bi) = 0 for all i = 1, . . . , `

• We now optimize over an extended space of variables including the lower-level dual variables λ

• Since we optimize over x, y, and λ simultaneously, any global solution of the problem above
corresponds to an optimistic bilevel solution

• The KKT reformulation is linear except for the KKT complementarity conditions

• Thus, the problem is a nonconvex NLP

28
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KKT reformulation of LP-LP bilevel problems

min
x,y,λ

c>x x + c>y y

s.t. Ax + By ≥ a, Cx + Dy ≥ b

D>λ = d, λ ≥ 0

λi(Ci·x + Di·y − bi) = 0 for all i = 1, . . . , `

• …
• Thus, the problem is a nonconvex NLP

It is even worse! It’s a mathematical program with complementarity constraints (an MPCC).

Bad news (Ye and Zhu 1995)

Standard NLP algorithms usually cannot be applied for such problems since classic constraint
qualifications like the Mangasarian–Fromowitz or the linear independence constraint qualification
are violated at every feasible point.
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How to solve the KKT reformulation?

Remember

The “only” reason for the nonconvexity of the KKT reformulation are the bilinear products of the
lower-level dual variables λi and the upper-level primal variables x in the term

λiCi·x

and the bilinear products of the lower-level dual variables λi and the lower-level primal variables y
in the term

λiDi·y.
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How to solve the KKT reformulation?

Key idea: Linearize these terms by exploiting the combinatorial structure of the KKT
complementarity conditions.

The complementarity conditions

λi(Ci·x + Di·y − bi) = 0, i = 1, . . . , `

can be seen as disjunctions stating that either

λi = 0 or Ci·x + Di·y = bi

needs to hold.

These two cases can be modeled using binary variables

zi ∈ {0, 1}, i = 1, . . . , `,

in the following mixed-integer linear way:

λi ≤ Mzi, Ci·x + Di·y − bi ≤ M(1− zi).

Here, M is a sufficiently large constant.
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How to solve the KKT reformulation?

By construction, we get the following result.

Theorem

Suppose that M is a sufficiently large constant. Then, the KKT reformulation is equivalent to the
mixed-integer linear optimization problem

min
x,y,λ,z

c>x x + c>y y

s.t. Ax + By ≥ a, Cx + Dy ≥ b,

D>λ = d, λ ≥ 0,

λi ≤ Mzi for all i = 1, . . . , `,

Ci·x + Di·y − bi ≤ M(1− zi) for all i = 1, . . . , `,

zi ∈ {0, 1} for all i = 1, . . . , `.
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Be careful!
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What to do if you have an MINLP in the
lower level?



The people that did the entire work …
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Convex Integer Nonlinear Bilevel Problem

min
x∈Zn1 ,y∈Zn2

F(x, y)

s.t. G(x, y) ≤ 0

y ∈ argmin
ȳ∈Zn2

{f (x, ȳ) : g(x, ȳ) ≤ 0}

• All variables are integer

• All functions are continuous and jointly convex
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Literature

• Mixed-integer linear bilevel problems
• DeNegre and Ralphs (2009)
• Wang and XU (2017)
• Fischetti, Ljubić, Monaci, and Sinnl (2017), (2018)

• Convex mixed-integer nonlinear bilevel problems
• Gaar, Lee, Ljubić, Sinnl, and Tanınmış (2023)
(“but” with special structural assumptions)
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Branch-and-Cut (à la Ralphs, DeNegre 2009)

• Ω := {(x, y) ∈ Rn : G(x, y) ≤ 0, g(x, y) ≤ 0}

• At node Nj: Ωj := Ω ∩ {(x, y) ∈ Rn : Ajx + Bjy ≤ aj}

• min(x,y)∈Ωj F(x, y)

• (xj, yj) solution of node Nj
• Branch on integrality constraints

• If (xj, yj) ∈ Zn is not bilevel-feasible, add a local cut

How to derive such a cut?
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Bilevel-Free Sets

Theorem (Similar to Fischetti, Ljubić, Monaci, Sinnl 2017)

For any ŷ ∈ Zn2 , the set

S(ŷ) :=
{
(x, y) ∈ Rn : g(x, ŷ) ≤ 0, f (x, y) > f (x, ŷ)

}
does not contain any bilevel-feasible point.
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Use of Bilevel-Free Sets: Intersection Cuts
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Computing Optimal Bilevel-Free Sets

Idea: Starting from yj, go to a point yj +∆y such that the bilevel-free set S(yj +∆y) contains the
point (xj, yj) in its interior

Solve the convex mixed-integer scoop problem (Wang and Xu 2017)

max
∆y,s,t

t

s.t. t ≤ si for all i ∈ I0

gi(xj, (yj +∆y)) + si ≤ 0 for all i ∈ I := {1, . . . ,m2}

f (xj, (yj +∆y))− f (xj, yj) + s0 ≤ 0

∆y ∈ Zn2

si ≥ 0 for all i ∈ I0 := I ∪ {0}
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General Idea: Disjunctive Cuts

• Suppose we have an ∆yj with tj > 0

• S(yj +∆yj) :=
{
(x, y) ∈ Rn : g(x, (yj +∆yj)) ≤ 0, f (x, y) > f (x, (yj +∆yj))

}
• D0(yj +∆yj) :=

{
(x, y) : f (x, y) ≤ f (x, (yj +∆yj))

}
• Di(yj +∆yj) :=

{
(x, y) : gi(x, (yj +∆yj)) ≥ 0

}
for i ∈ I = {1, . . . ,m2}

•
⋃
i∈I0 Di(y

j +∆yj) = int(S(yj +∆yj))C, I0 = {0, . . . ,m2}
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Illustration of the Disjunction
⋃
i∈I0 Di(yj +∆yj)
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The Cut-Generating Problem

Theorem (Gaar, Lee, Ljubić, Sinnl, Tanınmış 2022)

Let (xj, yj) ∈ Zn be an extreme point of the convex set Ωj which belongs to the interior of the
bilevel-free set S(yj +∆yj) for an appropriate ∆yj. Then, there exists a disjunctive cut that
separates (xj, yj) from Ωj ∩ Zn ∩

(⋃
i∈I0 Di

)
and it can be obtained by solving (CGP).

max
α,β,τ

α>xj + β>yj − τ

s.t. α>x + β>y − τ ≤ 0 for all (x, y) ∈ Ωj ∩ Zn ∩

⋃
i∈I0

Di


||(α, β, τ)||1 ≤ 1

(CGP)

Problem: integer, nonlinear, and nonconvex

43



The Cut-Generating Problem

Theorem (Gaar, Lee, Ljubić, Sinnl, Tanınmış 2022)

Let (xj, yj) ∈ Zn be an extreme point of the convex set Ωj which belongs to the interior of the
bilevel-free set S(yj +∆yj) for an appropriate ∆yj. Then, there exists a disjunctive cut that
separates (xj, yj) from Ωj ∩ Zn ∩

(⋃
i∈I0 Di

)
and it can be obtained by solving (CGP).

max
α,β,τ

α>xj + β>yj − τ

s.t. α>x + β>y − τ ≤ 0 for all (x, y) ∈ Ωj ∩ Zn ∩

⋃
i∈I0

Di


||(α, β, τ)||1 ≤ 1

(CGP)

Problem: integer, nonlinear, and nonconvex

43



The Cut-Generating Problem

Theorem (Gaar, Lee, Ljubić, Sinnl, Tanınmış 2022)

Let (xj, yj) ∈ Zn be an extreme point of the convex set Ωj which belongs to the interior of the
bilevel-free set S(yj +∆yj) for an appropriate ∆yj. Then, there exists a disjunctive cut that
separates (xj, yj) from Ωj ∩ Zn ∩

(⋃
i∈I0 Di

)
and it can be obtained by solving (CGP).

max
α,β,τ

α>xj + β>yj − τ

s.t. α>x + β>y − τ ≤ 0 for all (x, y) ∈ Ωj ∩ Zn ∩

⋃
i∈I0

Di


||(α, β, τ)||1 ≤ 1

(CGP)

Problem: integer, nonlinear, and nonconvex

43



The Relaxed Cut-Generating Problem

1. Solve the relaxed problem

max
α,β,τ

α>xj + β>yj − τ

s.t. α>x̃ + β>ỹ − τ ≤ 0 for all (x̃, ỹ) ∈ Zk

||(α, β, τ)||1 ≤ 1

(RCGP)

• k = 0, 1, 2, . . .

• Zk ⊆ Ωj ∩ Zn ∩
(⋃

i∈I0 Di
)
discrete set for all k

2. Check if the solution (αk, βk, τ k) separates all (x, y) ∈ Ωj ∩ Zn ∩
(⋃

i∈I0 Di
)
, i.e., if

Ψ(αk, βk, τ k) := max
x,y

(αk)>x + (βk)>y − τ k : (x, y) ∈ Ωj ∩ Zn ∩

⋃
i∈I0

Di

 ≤ 0
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Cut Verification I

Solve m2 + 1 subproblems
max
x0,y0

(αk)>x0 + (βk)>y0 − τ k

s.t. (x0, y0) ∈ Ωj ∩ Zn

f (x0, (yj +∆yj))− f (x0, y0) ≥ 0

(CVP0)

and
max
xi,yi

(αk)>xi + (βk)>yi − τ k

s.t. (xi, yi) ∈ Ωj ∩ Zn

gi(xi, (yj +∆yj)) ≥ 0

(CVPi)

⇒ obtain solutions (xi, yi)k for i = 0, . . . ,m2
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Cut Verification II

After obtaining solutions (xi, yi)k for i = 0, . . . ,m2

• Check if (αk)>(xi)k + (βk)>(yi)k − τ k > 0 for any i = 0, 1, . . . ,m2

• true: repeat the procedure with

Zk+1 ← Zk ∪
{
(xi, yi)k : (αk)>(xi)k + (βk)>(yi)k − τ k > 0, i ∈ I0

}
• false: we have a cutting plane

Lemma

Let f and gi be jointly convex and linear in x for all i ∈ {1, . . . ,m2}. Then, all subproblems (CVP0)
and (CVPi) for i ∈ {1, . . . ,m2} are convex.
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The Cut-Generating Method

Input: An integer-feasible node solution (xj, yj), which is bilevel-infeasible
1: Solve the scoop problem for given (xj, yj) and obtain ∆yj and tj.
2: if tj > 0 then
3: Solve the (RCGP) and obtain a valid inequality parameterized by (αk, βk, τ k).
4: Solve the subproblems (CVP0) and (CVPi) and obtain the solutions (xi, yi)k.
5: if (CVPi) are infeasible for all i = 0, . . . ,m2 then
6: Prune the node Nj.
7: else if (αk)>(xi)k + (βk)>(yi)k − τ k ≤ 0 for all i = 0, . . . ,m2 then
8: Add the locally valid inequality to the node problem Nj.
9: else
10: Update Zk and set k← k+ 1. Go to line 3.
11: end if
12: else
13: Add an integer no-good cut to the node problem Nj.
14: end if
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Correctness Theorem

The cut-generating procedure of the algorithm applied in a standard branch-and-cut method
terminates after a finite number of steps with a globally optimal solution or with a correct
indication of infeasibility.
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Problem Instances

ILP-IQP bilevel problems of the form

min
(x,y)∈Zn

c>x x + c>y y

s.t. Ax + By ≤ a

y ∈ argmin
ȳ∈Zn2

{
1
2 ȳ

>Qȳ + d>y ȳ : (Cx + Dȳ)i ≤ bi, i = 1, . . . ,m2 − 1,
1
2 ȳ

>Pȳ + (Cx + Dȳ)m2 ≤ bm2
}

• Subset of the QBMKP instances used in Gaar et al. (2023)
• With and without quadratic constraint in the lower level
• Different directions for the upper-level objective function (sim/opp)
• One lower-level constraint vs. 50% lower-level constraints
• 1600 Instances

• Subset of the MILP-MILP instance collections by Kleinert and Schmidt (2021)
• 180 Instances
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c>x x + c>y y

s.t. Ax + By ≤ a

y ∈ argmin
ȳ∈Zn2

{
1
2 ȳ

>Qȳ + d>y ȳ : (Cx + Dȳ)i ≤ bi, i = 1, . . . ,m2 − 1,
1
2 ȳ

>Pȳ + (Cx + Dȳ)m2 ≤ bm2
}

• Subset of the QBMKP instances used in Gaar et al. (2023)
• With and without quadratic constraint in the lower level
• Different directions for the upper-level objective function (sim/opp)
• One lower-level constraint vs. 50% lower-level constraints
• 1600 Instances

• Subset of the MILP-MILP instance collections by Kleinert and Schmidt (2021)
• 180 Instances
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Computational Setup

• Python 3.9.7
• CPLEX 22.1.0

• Presolve, heuristics deactivated
• Cuts realized with lazy constraint callbacks

• Gurobi 9.5.1

• 4 Intel XEON SP 6126 cores with 2.6 GHz and 32GB RAM
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Numerical Results QBMKP_sim

Idealized runtimes Node counts
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Numerical Results QBMKP_opp

Idealized runtimes Node counts
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Numerical Results QBMKP_50/50_sim

Idealized runtimes Node counts
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Numerical Results QBMKP_50/50_opp

Idealized runtimes Node counts
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An (in my opinion) important open
problem



Smart People
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Bilevel Optimization

min
x,y

F(x, y)

s.t. G(x, y) ≤ 0

x ∈ Rnx , y ∈ Rny

y ∈ S(x)

S(x): solution set of the convex lower-level problem

S(x) = argmin
y

{
f (x, y) : g(x, y) ≤ 0, y ∈ Rny}
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Once upon a time in multilevel gas market optimization …

A “small” extension: black-box constraint in the lower level

S(x) = argmin
y

{
f (x, y) : g(x, y) ≤ 0, b(y) ≤ 0, y ∈ Rny}

Assumption

The black-box function b is convex and for all (x, y) ∈ {(x, y) : G(x, y) ≤ 0, g(x, y) ≤ 0}, …

1. we can evaluate the function b(y),

2. we can evaluate the gradient ∇b(y),

3. the gradient is bounded, i.e., ‖∇b(y)‖ ≤ K for a fixed K ∈ R.
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A “First-Relax-Then-Reformulate” Approach

• Block-box constraint b(y) ≤ 0 is convex
• Construct a sequence of linear outer approximations (Er, er)r∈N of the black-box
constraint b(y) ≤ 0 with the property

{y ∈ Rny : b(y) ≤ 0} ⊆ {y ∈ Rny : Er+1y ≤ er+1} ⊆ {y ∈ Rny : Ery ≤ er}

• For a given upper-level solution x̄ ∈ Ωu and r ∈ N, the adapted lower-level problem reads

min
y∈Rny

f (x̄, y) s.t. g(x̄, y) ≤ 0, Ery ≤ er

• This is a relaxation of the original lower-level problem
•
¯
ϕr(x): optimal value function

• Assumption: Slater’s constraint qualification holds

Proposition

For every r ∈ N and every upper-level decision x ∈ Ωu, it holds

¯
ϕr(x) ≤

¯
ϕr+1(x) ≤ ϕ(x).
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“First-Relax-Then-Reformulate”

1: Choose δb > 0, set r = 0, s = 0, χ =∞, E0 = [0 . . . 0] ∈ R1×ny , e0 = 0 ∈ R.
2: while χ > δb or s > 0 do
3: Construct Er+1 and er+1.
4: if the modified variant of the single-level reformulation is feasible then
5: Solve this problem to obtain (xr+1, yr+1) and set s = 0.
6: else if the feasibility problem is feasible then
7: Solve this problem to obtain (xr+1, yr+1, s).
8: else
9: Return “The original problem is infeasible.”
10: end if
11: Set r ← r + 1 and χ = b(yr).
12: end while
13: Return (x̄, ȳ) = (xr, yr).

Theorem: If the algorithm terminates, then (x̄, ȳ) is (0, 0, δb, 0)-feasible for original bilevel problem.
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All the details …
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Nonconvexities in the Lower Level

Upper-level problem

“min
x
” F(x, y)

s.t. G(x, y) ≥ 0, y ∈ S(x)

Lower-level problem

min
y

f (x, y)

s.t. g(x, y) ≥ 0
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Who can solve this problem?

Upper level

max
x∈R2

F(x, y) = x1 − 2yn+1 + yn+2

s.t. (x1, x2) ∈ [x1, x̄1]× [x2, x̄2]

y ∈ S(x)

Lower level

max
y∈Rn+2

f (x, y) = y1 − yn (x1 + x2 − yn+1 − yn+2)

s.t. y1 + yn =
1
2

y2i ≤ yi+1, i ∈ {1, . . . ,n− 1}

yi ≥ 0, i ∈ {1, . . . ,n}

yn+1 ∈ [0, x1]

yn+2 ∈ [−x2, x2]

• x, x̄ ∈ R2 with 1 ≤ xi < x̄i, i ∈ {1, 2}

• Upper level is an LP
with simple bound constraints

• Upper level has no coupling constraints

• Feasible set of lower level is non-empty and
compact for all feasible leader decisions

• Slater’s CQ is also satisfied for all feasible
leader decisions

• All constraints are linear except for some
convex-quadratic inequality constraints

• The coefficients/right-hand sides
are either 0, 1, or 1/2

• Bilinear objective function
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Exact Feasibility

max
y∈Rn+2

f (x, y) = y1 − yn (x1 + x2 − yn+1 − yn+2)

s.t. y1 + yn =
1
2

y2i ≤ yi+1, i ∈ {1, . . . ,n− 1}

yi ≥ 0, i ∈ {1, . . . ,n}

yn+1 ∈ [0, x1]

yn+2 ∈ [−x2, x2]

Result #1
For every feasible leader’s decision
(x1, x2) ∈ [x1, x̄1]× [x2, x̄2], a feasible follower’s
decision y satisfies yn > 0.

Result #2
For every feasible leader’s decision
(x1, x2) ∈ [x1, x̄1]× [x2, x̄2], the set of optimal
solutions of the lower-level problem is a
singleton.

Result #3
The bilevel problem has a unique solution given
by x∗ = (x1, x̄2) with an optimal objective function
value of F∗ = x1 + x̄2.
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ε-feasibility

Definition

Let 0 < ε ∈ R, f : Rn → R, and g : Rn → Rm be given. A point x ∈ Rn is called ε-feasible for the
problem maxx∈Rn{f (x) : g(x) ≤ 0} if gi(x) ≤ 0 holds for all i ∈ {1, . . . ,m} \ N and if maxi∈N gi(x) ≤ ε

holds, where N ⊆ {1, . . . ,m} denotes the index set of all nonlinear constraints.

Result #4

Unless ε < 2−2n−1
, there is an ε-feasible follower’s decision y with yn = 0 for every feasible leader’s

decision (x1, x2) ∈ [x1, x̄1]× [x2, x̄2].

Result #5

Unless ε < 2−2n−1
, the set of ε-feasible follower’s solutions is not a singleton for every feasible

leader’s decision (x1, x2) ∈ [x1, x̄1]× [x2, x̄2].
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ε-feasibility

Result #3 (revisited)
The bilevel problem has a unique solution given by x∗ = (x1, x̄2) with an optimal objective function
value of F∗ = x1 + x̄2.

Result #6

Let ε ≥ 2−2n−1
and suppose that we allow for ε-feasible follower’s solutions.

Then, the optimistic optimal solution of the bilevel problem is given by x∗o = (x̄1, x̄2) with an optimal
objective function value of F∗o = x̄1 + x̄2.

The pessimistic optimal solution is given by x∗p = (x1, x2) with an optimal objective function value
of F∗p = −x1 − x2.

• By the way: n ≥ log2(log2(1/ε2))

• For ε = 10−8, the problem gets unsolvable for n = 6
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Well … and now?

Is this an impossibility result
for computationally solving bilevel problems

with continuous and nonconvex lower-level problems?
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