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The Bin Packing Problem

One of the most famous problems in combinatorial optimization.

Attacked with all main theoretical and practical tools.

Packing problems have been studied since the Thirties (Kantorovich).

In 1961 Gilmore and Gomory introduced, for these problems, the concept of column generation.

The worst-case performance of approximation algorithms investigated since the early Seventies.

Lower bounds and effective exact algorithms developed starting from the Eighties.

[Many heuristic and (starting from the Nineties) metaheuristic approaches.]

This talk will also introduce many basic general techniques for Combinatorial Optimization.

The field is still very active: 1
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Figure 1: Number of papers dealing with bin packing and cutting stock problems, 1993-
2018
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Definitions

1) Given n items, each having an integer weight (or size) wj (j = 1, . . . , n), and

an unlimited number of identical bins of integer capacity c,

Bin Packing Problem (BPP): pack all the items into the minimum number of bins so that

the total weight packed in any bin does not exceed the capacity.

We assume, with no loss of generality, that 0 < wj < c for all j.

————————————————————————————————————-

Main application (generalization):

2) Given m item types, each having an integer weight wj and an integer demand dj
(j = 1, . . . ,m), and

an unlimited number of identical bins of integer capacity c,

Cutting Stock Problem (CSP): produce (at least) dj copies of each item type j using the

minimum number of bins so that the total weight in any bin does not exceed the capacity.

Frequently interpreted as the process of cutting pieces (items) from rolls of material (bins).

————————————————————————————————————-

Real world applications in

packing trucks with a given weight limit,

assigning commercials to station breaks

allocating memory in computers,

subproblems in more complex optimization problems ...
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Polynomial models (textbooks)
• Let u be any upper bound on the minimum number of bins needed (e.g., approximate solution),

assume that the potential bins are numbered as 1, . . . , u.

yi =

{
1 if bin i is used in the solution;

0 otherwise
(i = 1, . . . , u),

xij =

{
1 if item j is packed into bin i;

0 otherwise
(i = 1, . . . , u; j = 1, . . . , n),

• Integer Linear Program (ILP) for the BPP (Martello and Toth, 1990)

min

u∑
i=1

yi (1)

s.t.
n∑
j=1

wjxij ≤ cyi (i = 1, . . . , u), (2)

u∑
i=1

xij = 1 (j = 1, . . . , n), (3)

yi ∈ {0, 1} (i = 1, . . . , u), (4)

xij ∈ {0, 1} (i = 1, . . . , u; j = 1, . . . , n). (5)

• Polynomial number of variables and constraints
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Polynomial models (cont’d)

• u and yi as before;

ξij = number of items of type j packed into bin i (i = 1, . . . , u; j = 1, . . . ,m).

• Integer Linear Program (ILP) for the CSP

min

u∑
i=1

yi (6)

s.t.
m∑
j=1

wjξij ≤ cyi (i = 1, . . . , u), (7)

u∑
i=1

ξij = dj (j = 1, . . . ,m), [or ≥ dj(equivalent)] (8)

yi ∈ {0, 1} (i = 1, . . . , u), (9)

ξij ≥ 0, integer (i = 1, . . . , u; j = 1, . . . ,m). (10)

BPP = special case of the CSP in which dj = 1 for all j;

CSP = a BPP in which the item set includes dj copies of each item type j.

The BPP (and hence the CSP) has been proved to be NP-hard in the strong sense (Garey and

Johnson, 1979: transformation from 3-Partition).
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Upper and lower bounds

• We will normally refer to the BPP (unless otherwise specified).

• Worst-case performance

• Given a minimization problem and an approximation algorithm A, let

– A(I) = solution value provided by A for an instance I;

– OPT(I) = optimal solution value for an instance I.

Then

Worst-case performance ratio (WCPR) of A =

smallest real number r(A) > 1 such that A(I)/OPT (I) ≤ r(A) for all instances I, i.e.,

r(A) = sup
I
{A(I)/OPT (I)}.

• Given a minimization problem and a lower bounding procedure L, let

– L(I) = lower bound provided by L for an instance I.

Then

Worst-case performance ratio (WCPR) of L =

largest real number r(L) < 1 such that L(I)/OPT (I) ≥ r(L) for all instances I, i.e.,

r(L) = inf
I
{L(I)/OPT (I)}.
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Approximation algorithms

• Seminal results: David Johnson’s PhD thesis, 1973.

• Huge literature (specific surveys, ∼ 200 references).

• Two main families:

– On-line algorithms: sequentially assign items to bins, in the order encountered in input,

without knowledge of items not yet packed.

– Off-line algorithms: all items are known in advance, and are available for sorting,

preprocessing, grouping, etc.

• Many other (less relevant) families:

– semi on-line,

– bounded space,

– open-end,

– conservative,

– re-pack,

– dynamic,

– ...
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On-line algorithms
• Next-Fit (NF): pack the next item into the current bin if it fits, or into a new bin (which

becomes the current one) if it doesn’t;

time complexity: O(n);

worst-case: r(NF ) = 2 (Hint: the contents of two consecutive bins is > c).

• First-Fit (FF): pack the next item into the lowest indexed bin where it fits, or into a new bin if

it does not fit in any open bin.

time complexity: trivial implementation: O(n2). With special data structures: O(n logn).

• Best-Fit (BF): pack the next item into the feasible bin (if any) where it fits by leaving the

smallest residual space, or into a new one if no open bin can accommodate it;

time complexity: same as FF.

• Numerical example:

n = 12, c = 100, (wj) = ( 50 3 48 53 53 4 3 41 23 20 52 49 )

NF: {50 3}, {48}, {53}, {53 4 3}, {41 23 20}, {52}, {49} 7 bins

FF: {50 3 4 3 23}, {48 41}, {53 20}, {53}, {52}, {49} 6 bins

BF: {50 3 4 3 23}, {48 52}, {53 41}, {53 20}, {49} 5 bins

• The exact WCPR of FF and BF has been an open problem for forty years,

until recently (2014) Dósa and Sgall proved that r(FF ) = r(BF ) = 17
10.

• Other algorithms: Worse-Fit (WF, leave the largest residual space), Any-Fit, Almost Any-Fit,

Bounded space, Next-k-Fit, Harmonic-Fit, Refined First-Fit, Modified Harmonic-Fit, ...
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Off-line algorithms

• Most of the classical on-line algorithms achieve their worst-case performance when the items

are packed in increasing order of size or if small and large items are merged, and hence

• main off-line category: sort the items in decreasing order of size (time O(n logn)).

• Next-Fit Decreasing
time complexity: O(n logn);

Exact worst-case unknown. It has been proved that it is not more than 7
4.

• First-Fit Decreasing; time complexity: O(n logn); worst-case: r(FFD) = 3
2.

• Best-Fit Decreasing (BFD); time complexity: O(n logn); worst-case: r(BFD) = 3
2.

• Numerical example (resumed):

n = 12, c = 100, (wj) = ( 50 3 48 53 53 4 3 41 23 20 52 49 );

Sorted items: (wj) = ( 53 53 52 50 49 48 41 23 20 4 3 3 );

NFD: {53}, {53}, {52}, {50 49}, {48 41}, {23 20 4 3 3} 6 bins

FFD: {53 41 4}, {53 23 20 3}, {52 48}, {50 49}, { 3} 5 bins

BFD: {53 41 3 3}, {53 23 20 4}, {52 48}, {50 49}, 4 bins, optimum
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Best polynomially achievable worst-case performance

• Worst-case of FFD and BFD: r(FFD) = r(BFD) = 3
2.

• Can we find a better algorithm? Bad news:

• No polynomial-time approximation algorithm for the BPP can have a WCPR smaller
than 3

2 unless P = NP.

• Partition problem: is it possible to partition S = {w1, . . . , wn} into S1, S2 so that∑
j∈S1

wj =
∑

j∈S2
wj?

Partition is NP-complete.

Assume a polynomial-time approximation algorithm A for the BPP exists such that

OPT(I) > 2
3 A(I) for all instances I.

Execute A for an instance Î of the BPP defined by (w1, . . . , wn) and c =
∑n

j=1wj/2.

if A(Î) = 2 then we know that the answer to Partition is yes;

else (A(Î) ≥ 3) we know that OPT(Î) > 2
3 3, i.e., that OPT(Î) > 2,

and hence the answer to Partition is no.

In other words, we could solve Partition in polynomial time! 2
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Asymptotic worst-case performance

• FFD and BFD provide the best possible WCPR =⇒ the study approximation algorithms

focused on a different performance ratio.

• Already in the mid-Seventies D. Johnson proved that FFD(I) ≤
11

9
OPT (I) + 4 ∀ I.

• Asymptotic worst-case performance ratio of an approximation algorithm A =

smallest real number r∞(A) > 1 such that, for some positive integer k,

A(I)/OPT (I) ≤ r∞(A) for all instances I satisfying OPT (I) ≥ k.

• r∞(FFD) = r∞(BFD) =
11

9
.

• Impressive number of results, of mostly theoretical relevance (see surveys).

• “History” of the 11/9 ratio:

– Johnson (1974): FFD(I) ≤
11

9
OPT (I) + 4 ∀I. Proof: 100 pages;

– Baker (1985): FFD(I) ≤
11

9
OPT (I) + 3 ∀I. Proof: 20 pages;

– Yue (1991): FFD(I) ≤
11

9
OPT (I) + 1 ∀I. Proof: 10 pages.
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Asymptotic worst-case of on-line algorithms

Algorithm Time r∞(A)

NF O(n) 2

WF O(n logn) 2

FF O(n logn) 1.7

BF O(n logn) 1.7

• Any-Fit constraint:

If B1, . . . , Bi are the current non-empty bins, then the current item

will not be packed into Bi+1 unless it does not fit in any of the bins B1, . . . , Bi.

• AF = class of on-line heuristics satisfying the Any-Fit constraint.

• FF, WF, BF ∈ AF .

• It can be proved that

For every algorithm A ∈ AF , r∞(FF ) ≤ r∞(A) ≤ r∞(WF )
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Asymptotic worst-case of off-line algorithms
• For any algorithm A ∈ AF that packs the items by nonincreasing size,

11

9
≤ r

∞
(A) ≤

5

4

Algorithm Time r∞(A)

NFD O(n logn) 1.691... Johnson et al., 1973-1974

FFD O(n logn) 1.222... Johnson et al., 1973-1974

BFD O(n logn) 1.222... Johnson et al., 1973-1974

MFFD O(n logn) 1.183... Garey & Johnson, 1985

B2F O(n logn) 1.25 Friesen & Langston, 1991

CFB O(n logn) 1.16410... ≤ · ≤ 1.2 Friesen & Langston, 1991

GXFG O(n) 1.5 Johnson, 1974

H4 O(n) 1.333... Martel, 1985

H7 O(n) 1.25 Bekesi & Galambos, 1997

MFFD (Modified FFD): Try to pack pairs of items with size in (c/6, c/3] into bins containing a

single item of size > c/2.

B2F (Best Two Fit): Fill one bin at a time, in greedy way; when no further item fits into the

current bin, if the bin contains more than one item, try to replace the smallest item in the bin with

a pair of unpacked items with size ≥ c/6.

CFB (combined FFD–B2F): run both B2F and FFD and take the better packing.

S. Martello, Bin packing problems 13



Approximation schemes
• Approximation scheme = parametric family of approximation algorithms that produces a

prefixed worst-case behavior.

• Question: Does there exist an ε > 0 such that every O(n)-time algorithm A must satisfy

r∞(A) ≥ 1 + ε?

• Answer: No (Fernandez de la Vega and Lueker, 1981):

For any ε > 0 there exists a linear-time algorithm Aε such that

r
∞
(Aε) ≤ 1 + ε ∀ε

Aε is a Polynomial-Time Approximation Scheme based on:

– partitioning of the items (depending on ε);

– rounding techniques;

– solution of an LP relaxation;

– Next-Fit technique.

• The time complexity of Aε is polynomial (linear) in n ∀ ε, but exponential in
1

ε
.

• Improved by Karmarkar and Karp, 1982: Fully Polynomial-Time Approximation Scheme;

time complexity polynomial (linear) both in n and
1

ε
.
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Lower bounds

• Continuous relaxation: L1 =
⌈∑n

j=1wj/c
⌉

. Computable in O(n) time.

• In the optimal solution at most one bin can have a total contents ≤
c

2
.

=⇒
∑n

j=1wj >
OPT (I)−1

2 c =⇒ OPT (I) ≤ 2

∑n
j=1wj

c ≤ 2L1

=⇒ r(L1) = 1
2 (worst case: (w) = (c2 + 1, c2 + 1, . . . ))

• A better bound (Martello and Toth, 1990). Given any integer α (0 ≤ α ≤ c/2), let

J1 = {j ∈ N : wj > c− α}; α

0 α c/2 cc−α
- J1

- J2
-J3

J2 = {j ∈ N : c− α ≥ wj > c/2};

J3 = {j ∈ N : c/2 ≥ wj ≥ α},

each item in J1 ∪ J2 needs a separate bin,

no item of J3 can go to a bin containing an item of J1. Then

L(α) = |J1|+ |J2|+ max

(
0,

⌈∑
j∈J3 wj−(|J2|c−

∑
j∈J2 wj)

c

⌉)
is a valid lower bound.

The overall bound L2 = max{L(α) : 0 ≤ α ≤ c/2, α integer}

(1) can be computed in O(n logn) time;

(2) has WCPR equal to 2
3.
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Best polynomially achievable worst-case performance

• Worst-case of L2: 2
3.

• Can we find a better lower bound?

• No lower bound, computable in polynomial time, for the BPP can have a WCPR
greater than 2

3 unless P = NP.

• Partition problem: is it possible to partition S = {w1, . . . , wn} into S1, S2 so that∑
j∈S1

wj =
∑

j∈S2
wj? (NP-complete).

Assume a polynomial-time lower bound L exists such that OPT(I) < 3
2 L(I) ∀ instances I.

Compute L for instance Î of the BPP defined by (w1, . . . , wn) and c =
∑n

j=1wj/2.

if L(Î) ≥ 3 then we know that the answer to Partition is no.;

else (L(Î) = 2) we know that OPT(Î) < 3
2 2, i.e., OPT(Î) = 2 and the answer to

Partition is yes.

In other words, we could solve Partition in polynomial time! 2
• Other lower bounds can have better practical performance (Labbé et al., Martello and Toth)

and have asymptotic WCPR equal to 3
4.

• Different types of lower bound computations are based on dual feasible functions (Lueker,

Fekete and Schepers).

• Methods to improve on a lower bound value (Dell’Amico and Martello, Alvim et al., Haouari

and Gharbi, Jarboui et al.)
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Reduction Algorithms

• Reduction Algorithm = preprocessing procedure used to determine the optimal value of a

subset of variables.

• Numerical Example: n = 12, c = 100,

(wj) = (99 93 90 88 80 10 10 6 5 5 4 4 ).

99 alone in a bin;

93 can be packed with at most one more item→ packing it with 6 is dominating (largest item);

reduced instance: (wj) = ( 90 88 80 10 10 5 5 4 4 );

90 can be packed with at most two more items→ packing it with 10 is dominating (bin full);

reduced instance: (wj) = ( 88 80 10 5 5 4 4 );

88 can be packed with at most two more items→ packing it with 10 is dominating (10 ≥
maximum pair);

reduced instance: (wj) = ( 80 5 5 4 4 ): one bin (optimal solution).

• Ideas generalized to a

general Dominance Criterion between pairs of subsets of items (Martello and Toth)
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Exact Algorithms: Branch-and-Bound

• Eilon and Christofides, 1971 (enumerative algorithm);

Hung and Brown, 1978 (branch-and-bound);

Martello and Toth, 1990 (specifically tailored branch-and-bound: MTP, popular Fortran code);

Scholl, Klein and Jurgens, 1997 (BISON: MTP + Tabu search, Pascal code).

• Outline (MTP)

– depth-first strategy;

– items sorted by non-increasing size;

– at each decision node, the first (largest) free item is assigned

∗ to all feasible initialized bins,

∗ and, possibly, to a new bin.

– At any forward step

∗ lower bound computations (L2 and L3 (improved bound));

∗ reduction of the current instance;

∗ if the node is not fathomed, FFD, BFD and WFD executed on the current problem to try

and improve the incumbent solution.

– Dominance criterion between decision nodes.

– Computations at the decision nodes:

∗ for each initialized bin, create a

“super item” having size = sum of the sizes of the items in the bin;

∗ lower bounds and reduction for the instance given by {super items} ∪ {free items}.
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Example

n = 10, c = 100, (wj) = (49 41 34 33 29 26 26 22 20 19 ):

���
0

{49}
L2 = 3

���
1
@
@
@
@

{49}, {41}�
�

�
�

{49, 41}

���
2

{49, 41}{34}
���

���
3
@
@
@
@

�
�
�
�

{49, 41}{34, 33} {49, 41}
{34}{33}���

4
@
@
@
@

{49, 41}
{34, 33}
{29}

�
�

�
�

{49, 41}
{34, 33, 29}

���
12

L2 = 4

���
5

{49, 41}
{34, 33, 29}
{26, 26, 22, 20}. . .

���
9 {49, 41}
{34, 33, 29}
{26, 26, 22, 20}
{19}���

10
z = 4

���
11

L2 = 4

lower bound computation at node 11:

instance with super items:

n = 8, c = 100,

(wj) = (90 67 29 26 26 22 20 19 ):

α = 19 : J1 = {1}, J2 = {2}, J3 = {3, . . . , 8};

L2(α) = 2 +

⌈
142− (1 · 100− 67)

100

⌉
= 4

. . .
. . . . . . . . . . . .

���
15
@
@
@
@

{49}{41, 33}
{34}

�
�
�
� ���

16

Reduction (super item 41+33=74):
{41, 33, 26} removed from the instance
FFD on the residual instance:
{49, 29, 22}
{34, 26, 20, 19}
optimal
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Exact Algorithms: Branch-and-Bound/-and-Price/-and-Cut

• Classical Branch-and-Bound for ILP/MILP: At each node of the branch-decision tree:

– solve the LP relaxation of the (sub-)problem associated with the the current decision node;

– if the solution is not integer, separate a fractional variable to get

2 new sub-problems (2 new decision nodes);

– continue until all decision nodes have been explored.

• Branch-and-Cut: ...(Branch-and-Bound) but

– if the solution is not integer, before separating, add cutting planes to strengthen the

relaxation, possibly finding an integer solution or improving on the lower bound value.

– if the solution remains not integer, separate.

• Branch-and-Price: ...(Branch-and-Bound) but

– use column generation to solve the LP relaxation at each node:

– initially, only a subset of columns is included in the LP relaxation (Restricted Master

Problem);

– an auxiliary problem (Pricing Problem) is used to check optimality and to find columns to be

added to improve the LP solution value;

• Branch-and-Price-and-Cut = Branch-and-Bound + column generation + cutting planes.

• For the BPP and the CSP, all Branch-and-Price (-and-Cut) algorithms are based on the set

covering formulation and the solution of its continuous relaxation through column generation

(seminal work by Gilmore and Gomory).
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Set covering formulation

• Enumeration of the set P of all patterns p (combinations of items that can fit into a bin).

• For the CSP: pattern p ≡ integer array (a1p, a2p, . . . ), with ajp = number of copies of item

j contained in pattern p, satisfying
m∑
j=1

ajpwj ≤ c and ajp ≥ 0, integer ∀j.

• Let yp = number of times pattern p is used. Set covering formulation of the CSP:

min
∑
p∈P

yp (11)

s.t.
∑
p∈P

ajpyp ≥ dj (j = 1, . . . ,m), (12)

yp ≥ 0 and integer (p ∈ P ). (13)

• Similarly for the BPP: (i) p ≡ binary array, yp binary (= 1 iff pattern p is used for a bin):∑
p∈P

ajpyp ≥ 1 (j = 1, . . . , n) (14)

• the number of feasible patterns is exponential
=⇒ the number of columns of the LP relaxation is exponential=⇒ Column generation
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Column generation

• Heuristically initialize the LP relaxation with a subset of patterns P ′ ⊂ P
(Restricted Master Problem, RMP):

min
∑
p∈P ′

yp (15)

s.t.
∑
p∈P ′

ajpyp ≥ dj (j = 1, . . . ,m), (16)

yp ≥ 0 (p ∈ P ′). (17)

• Solve (15)-(17) and let πj be the dual variables associated with the jth constraint (16).

• Pricing: find a column p 6∈ P ′ that could reduce the objective function value:

– find the column with the most negative reduced cost (Slave Problem (SP))

by solving an associated knapsack problem in the dual variables.

– if the SP finds such a column (pattern), then add the corresponding column to the RMP.

• Iterate until no column with negative reduced cost is found (optimal solution).

• Huge number of Branch-and-Price(-and-Cut) algorithms in the Nineties and the Noughties;

• Most efficient algorithm (and C++ computer code): Belov and Scheithauer (2006).
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Parenthesis: IRUP and MIRUP (BPP and CSP)

• LLP = solution value of the LP relaxation of the set covering formulation;

• zopt = optimal solution value;

• IRUP (Integer Round-Up Property) conjecture: zopt = dLLPe.

• Disproved by Marcotte (1986) (instance with n = 24 and c = 3, 397, 386, 255).

• MIRUP (Modified IRUP) conjecture: zopt ≤ dLLPe+ 1.

• Conjecture open.
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Pseudo-Polynomial Formulations

• The number of variables and constraints depends on the number of items

and on the bin capacity.

One-cut formulation

• Independently developed by Rao in 1976 and by Dyckhoff in 1981.

• Basic idea (for the CSP): simulate the physical cutting process:

– divide an ideal bin into two pieces, where

– the left piece is an item that has been cut;

– the right piece is either another item

or a residual that can be re-used to produce other items.

– Iterate the process on cutting residuals or new bins, until all demands are fulfilled.

– Integer variables xpq = number of times a bin, or a residual of width p,

is cut into a left piece of width q and a right piece of width p− q.

• The resulting ILP model has O(mc) variables and O(c) constraints.
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DP-flow formulation

• Cambazard and O’Sullivan (2010): Basic idea (for the BPP):

– associate variables with the decisions taken in a classical dynamic programming (DP) table;

– DP states↔ graph: path from initial to terminal node = feasible filling of a bin.

• Example: n = 6, c = 9, w = (4, 4, 3, 3, 2, 2):

[j, d] (j = 0, .., n; d = 0, .., c): [decisions taken up to item j, partial bin filling d units].
Figure 1 DP-flow graph construction for Example 1

0, 0

1, 0

2, 0

3, 0

4, 0

5, 0

6, 0

1, 4

2, 4

3, 4

4, 4

5, 4

6, 4

2, 8

3, 8

4, 8

5, 8

6, 8

3, 3

4, 3

5, 3

6, 3

3, 7

4, 7

5, 7

6, 7

4, 6

5, 6

6, 6

5, 9

6, 9

5, 2

6, 2

5, 5

6, 5

7, 9

(resp. emanating from) state (j, d). The BPP can be then modeled as

min z (16)

s.t.
∑

((j,d),(j+1,e))∈δ+((j,d))

xj,d,j+1,e −
∑

((j−1,e),(j,d))∈δ−((j,d))

xj−1,e,j,d =





z if (j, d) = (0, 0);
−z if (j, d) = (n+ 1, c);
0 otherwise,

(17)
∑

((j−1,d),(j,d+wj))∈A
xj−1,d,j,d+wj

= 1 (j = 1, . . . , n), (18)

xj,d,j+1,e ≥ 0 and integer ((j, d), (j + 1, e)) ∈ A. (19)

The objective function (16) minimizes the number of bins. Constraints (17) impose the flow
(number of bins) conservation at all nodes, while constraints (18) ensure that each item
is packed exactly once. Note that a “≥” sign could be used in (18) without affecting the
correctness of the model.

Example 1 (resumed) For the BPP instance an optimal solution is produced by the two
paths highlighted in Figure 1, namely [(0,0), (1,4), (2,4), (3,7), (4,7), (5,9), (6,9), (7,9)] and
[(0,0), (1,0), (2,4), (3,4), (4,7), (5,7), (6,9), (7,9)]. �
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���������������������

item 1 in bin 1

����������������������

item 2 not in bin 1

��������

item 2 in bin 1

• Network Flow-type model to minimize the number of paths. O(nc) variables and constraints.
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Arc-flow formulation
• Valério de Carvalho (1999) anticipated DP-flow (but Wolsey (1977) anticipated everybody):

vertically shrunk the DP graph: states with the same partial bin filling→ single state:

Figure 1 DP-flow graph construction for Example 1
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(resp. emanating from) state (j, d). The BPP can be then modeled as

min z (16)

s.t.
∑

((j,d),(j+1,e))∈δ+((j,d))

xj,d,j+1,e −
∑

((j−1,e),(j,d))∈δ−((j,d))

xj−1,e,j,d =





z if (j, d) = (0, 0);
−z if (j, d) = (n+ 1, c);
0 otherwise,

(17)
∑

((j−1,d),(j,d+wj))∈A
xj−1,d,j,d+wj

= 1 (j = 1, . . . , n), (18)

xj,d,j+1,e ≥ 0 and integer ((j, d), (j + 1, e)) ∈ A. (19)

The objective function (16) minimizes the number of bins. Constraints (17) impose the flow
(number of bins) conservation at all nodes, while constraints (18) ensure that each item
is packed exactly once. Note that a “≥” sign could be used in (18) without affecting the
correctness of the model.

Example 1 (resumed) For the BPP instance an optimal solution is produced by the two
paths highlighted in Figure 1, namely [(0,0), (1,4), (2,4), (3,7), (4,7), (5,9), (6,9), (7,9)] and
[(0,0), (1,0), (2,4), (3,4), (4,7), (5,7), (6,9), (7,9)]. �
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The DP-flow model (16)-(19) has O(nc) variables and constraints. This formulation
was developed in [22] for the BPP, but it could be extended to the CSP. The formulations
introduced in the next section were instead specifically tailored on the CSP.

4.4 Arc-flow formulations

An effective CSP pseudo-polynomial formulation, denoted arc-flow, was presented by Valério
de Carvalho [145], who used it in a branch-and-price algorithm (see Section 6). To make
its comprehension easier, consider again Example 1, and the DP representation depicted in
Figure 1. Now imagine that the graph is vertically shrunk, by grouping all states with the
same partial bin filling into a single one. In this way, the “vertical” arcs disappear, while the
“slanting” ones that connect the same pair of nodes merge into a single arc. Figure 2 shows
the counterpart of Figure 1. Note that the loss arcs, which imply no bin filling variation,
connect here consecutive nodes instead of (equivalently) going to the terminal node. Let
A′ denote the resulting arc set, and xde the number of times arc (d, e) ∈ A′ is chosen. The
filling of a single bin corresponds to a path from node 0 to node c in this graph. The CSP
can then be modeled as the following ILP:

min z (20)

s.t. −
∑

(d,e)∈δ−(e)

xde +
∑

(e,f)∈δ+(e)

xef =





z if e = 0;
−z for e = c;
0 otherwise,

(21)

∑

(d,d+wi)∈A′

xd,d+wi
≥ bi (i = 1, . . . , m), (22)

xde ≥ 0 and integer (d, e) ∈ A′, (23)

where δ−(e) (resp. δ+(e)) denotes the set of arcs entering (resp. emanating from) e.
Constraints (21) impose the flow conservation at all nodes. Constraints (22) impose that,

for each item type i, at least bi arcs of length wi are used, i.e., that at least bi copies of item
type i are packed.

Example 1 (resumed) An optimal solution to the CSP instance consists of two identical
paths [0, 4, 7, 9], highlighted in Figure 2. �

The arc-flow model (20)-(23) has O(mc) variables and O(m+ c) constraints. Valério de
Carvalho [145] proposed however a number of improvements to the above basic model, aimed
at reducing the number of arcs. For example (see again Figure 2), it is enough to only create

Figure 2 Arc-flow representation of the graph of Figure 1

0 2 3 4 5 6 7 8 9
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• CSP modeled as a network flow problem;

• Brandão and Pedroso (2016): alternative arc-flow formulation, very effective code VPSOLVER.
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Computer codes and the BPPLIB

 

You will find (from this talk):

MTP (branch-and-bound, Fortran)

BISON (branch-and-bound, MTP + Tabu Search, Pascal)

BELOV (branch-and-cut-and-price, C++ & Cplex)

ONECUT (pseudo-polynomial, C++ & Cplex/SCIP))

ARCFLOW (pseudo-polynomial, C++ & Cplex/SCIP)

DPFLOW (pseudo-polynomial, C++ & Cplex/SCIP)

VPSOLVER (pseudo-polynomial, C++ & Gurobi)

Other codes, benchmarks, links, BibTeX file, interactive visual solver.
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Experimental evaluation (BPP)

Number of literature instances solved in less than 10 minutes
Set # inst. BISON BELOV ARCFLOW VPSOLVER

Falkenauer U 74 50 74 74 74
Falkenauer T 80 47 80 80 80
Scholl 1 323 290 323 323 323
Scholl 2 244 234 244 231 242
Scholl 3 10 3 10 0 10
Wäscher 17 10 17 4 13
Schwerin 1 100 100 100 100 100
Schwerin 2 100 63 100 100 100
Hard28 28 0 28 26 26

Total 976 797 976 938 968

Number of random instances solved in less than 10 minutes
n # inst. BISON BELOV ARCFLOW VPSOLVER

50 165 165 165 165 165
100 271 261 271 271 271
200 359 299 359 359 359
300 393 269 393 393 393
400 425 250 425 425 425
500 414 212 414 414 414
750 433 217 433 431 433

1000 441 200 441 434 441

Total 2901 1873 2901 2892 2901
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Difficult instances

Number of difficult (ANI) instances, out of 50, solved in less than 1 hour (average absolute gap)

n c BISON BELOV ARCFLOW VPSOLVER

201 2500 0 (1.0) 50 (0.0) 16 (0.7) 47 (0.1)
402 10000 0 (1.0) 1 (1.0) 0 (1.0) 6 (0.9)
600 20000 - (1.0) - 0 (1.0)
801 40000 - (1.0) - 0 (1.0)

1002 80000 - - - -

Overall 0 (1.0) 51 (0.7) 16 (0.8) 53 (0.7)

A final comment:

• Originally (ARCFLOW, 1999) pseudo-polynomial formulations were seen as theoretical results

and rarely directly used in practice as ILP formulations (too many variables and constraints).

• Nowadays they are extremely competitive in practice. Why?

• 20 selected random instances (n ∈ [300, 1000], c ∈ [400, 1000];

ARCFLOW: # constraints ∈ [482, 1093], #variables ∈ [32 059, 111 537]);

8 versions of CPLEX: number of solved instances [average CPU time]:

Time inst. 6.0 (1998) 7.0 (1999) 8.0 (2002) 9.0 (2003) 10.0 (2006) 11.0 (2007) 12.1 (2009) 12.6.0 (2013)

10 minutes 20 13 [366] 10 [420] 5 [570] 17 [268] 19 [162] 20 [65] 19 [117] 20 [114]
60 minutes 20 16 [897] 15 [1210] 15 [2009] 20 [343] 20 [186] 20 [65] 19 [267] 20 [114]
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Two-Dimensional Packing Problems: Definitions

• Geometrical interpretation of the (one-dimensional) BPP:

pack a set of segments (items) into the minimum number of identical large segments (bins):
1 2 3 4
w1 w2 w3 w4

1 4

c

2 3

• Two possible two-dimensional extensions.

Given n rectangular items, each having integer height hj and width wj (j = 1, . . . , n),

————————————————————————————————————

1) Two-Dimensional Bin Packing Problem (2BPP):

given an unlimited number of identical rectangular bins of integer height H and width W ,

pack all the items, without overlapping, into the minimum number of bins

(find the minimum number of cutting patterns providing all the items).

———————————————————————————————————–

2) Two-Dimensional Strip Packing Problem (2SPP):

given a single open-ended bin (strip) of width W and infinite height
determine a cutting pattern providing all the items

such that the height to which the strip is filled is minimized.

(Also called 1.5-dimensional packing.)
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Applications

• Industrial cutting. Cutting from:

– standardized stock pieces (glass industry, wood industry, ...) =⇒ 2BPP;

– rolls (textile industry, paper industry, ...) =⇒ 2SPP;

• Transportation:

– packing on floors, shelves, truck beds, ...

– packing into containers (3-Dimensional Bin Packing Problem, reduction to a series of 2BPP)

• Memory sharing: shared storage multiprocessor system: 2SPP with

job j ←→ rectangle j

memory requirement ←→ wj (contiguous locations)

time requirement ←→ hj
system ←→ strip

available memory ←→ W

time ←→ height

Complexity

• Both the 2BPP and the 2SPP are special cases of the BPP;

• both are strongly NP-hard.
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Variants

• Guillotine Cuts: In cutting applications it may be imposed that the patterns be such that the

items can be obtained by sequential edge-to-edge cuts parallel to the edges of the bin.

guillotine-cuts:

1 3

2
� cut no. 1

6

cut no. 2

� cut no. 3

non guillotine-cuts:

5

6
4

7

• additional constraints: limit on the number of cuts per bin (2,3).
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Variants

• Item Rotation: if the items in demand do not have a prefixed orientation with respect to the

bins then they may be rotated (usually by 90◦).

1
2 3

h1

w1

4

5
6 7

1 3

2

H

W

5

6
4

7
no
rotation

5

4

6 7

rotation
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65

7 4

W
no rotation

2
1 4 5

6 7 3

W
rotation

• Guillotine-cuts and rotations are frequent in other two-dimensional packing problems

(Two-Dimensional Cutting Stock, Two-Dimensional Knapsack)

• For two-dimensional bin (strip) packing problems most results concern the case:

no guillotine-cut required, no rotation allowed (implicitly assumed in the following).
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Approximation algorithms

Two main families of heuristic algorithms:

• one-phase algorithms: directly pack the items into the bins;

• two-phase algorithms:

– Phase 1: pack the items into a single strip;

– Phase 2: use the strip solution to construct a packing into bins.

• Shelf algorithms: in most of the approaches the bin/strip packing is obtained by placing the

items, from left to right, in rows forming levels (shelves):

– 1st shelf = bottom of the bin/strip;

– subsequent shelves = horizontal line given by the top of the tallest item in the shelf below.

-
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Shelf packing strategies (2SPP)

• sort the items by nonincreasing height (assumed in the following);

• j = current item, s = last created shelf:

• Next-Fit Decreasing Height (NFDH): pack j left justified in shelf s, if it fits; otherwise,

create a new shelf (s+ 1), and pack j left justified into it.

• First-Fit Decreasing Height (FFDH): pack j left justified in the first shelf where it fits, if

any; if no shelf is feasible, initialize a new shelf as in NFDH.

• Best-Fit Decreasing Height (BFDH): pack j left justified in the feasible shelf which

minimizes the unused horizontal space; if no shelf is feasible, initialize a new shelf as in NFDH.

1
2

3 4

5 6

1
2

4
6

3 5

1
2

5 6

3 4

NFDH FFDH BFDH
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Worst-Case Performance (2SPP)

• If the heights are normalized so that maxj{hj} = 1, for the Strip packing we have

(Coffman, Garey, Johnson, and Tarjan, 1980):

NFDH(I) ≤ 2 ·OPT (I) + 1 ∀ I

and

FFDH(I) ≤
17

10
·OPT (I) + 1 ∀ I

• Remind: for the BPP, r(NF ) = 2, r(FF ) = 17
10.

• Both bounds are tight.

• If the hj’s are not normalized, only the additive term is affected.

• Both algorithms can be implemented so as to require O(n logn) time, through the

appropriate data structures used for the 1BPP.
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Two-phase algorithms (2BPP)
• Hybrid First-Fit (HFF, Chung, Garey, and Johnson, 1982):

– Phase 1: strip packing through FFDH→ H1, H2, . . . =heights of the resulting shelves

(H1 ≥ H2 . . . by construction).

– Phase 2: one-dimensional bin packing problem over the shelves:
item sizes Hi, bin capacity H: solve through the FFD algorithm (BPP):

– initialize bin 1 to pack shelf 1;
– for i := 2, . . . do pack shelf i into the lowest indexed bin where it fits, if any

(otherwise initialize a new bin).

1) 2)

1 3 1 3

2
5

8
7

9

4 6 2 5
8

7
9

4 6

H1

H2

H3

H4

• If the heights are normalized to 1, HFF (I) ≤
17

8
·OPT (I) + 5 ∀ I
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Other two-phase algorithms (2BPP)

• Hybrid Best-Fit (HBF, Berkey and Wang, 1982):

– Phase 1: strip packing through the BFDH strategy;

– Phase 2: 1BPP solved through the Best-Fit Decreasing algorithm.

• Hybrid Next-Fit (HNF, Frenk and Galambos, 1987):

– Phase 1: strip packing through the NFDH strategy;

– Phase 2: 1BPP solved through the Next-Fit Decreasing algorithm.

• Both O(n logn) time.

• Floor-Ceiling (FC, Lodi, Martello, and Vigo, 2000):

– ceiling = horizontal line defined by the top edge of the tallest item packed in the shelf;

– pack on the shelf floor (left to right) and with the top edge on the ceiling (right to left).

– O(n3) time but better experimental performance.

1 2 3
4

58

7

6
�

�

ceiling

floor

• Knapsack packing (Lodi, Martello, and Vigo, 1999):

optimize the packing on the shelves by solving associated knapsack problems (NP-hard).
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One-phase algorithms (2BPP)

• Finite Next-Fit (FNF):

– pack the current item in the current shelf of the current bin, if it fits;

– otherwise, create a new (current) shelf

either in the current bin (if enough vertical space is available)

or by initializing a new bin.

• Finite First-Fit (FFF):

– pack the current item in the lowest shelf of the first bin where it fits;

– if no shelf can accommodate it, create a new shelf

either in the first suitable bin

or by initializing a new bin

1

5

3

6

2 4

7

8

• Both O(n logn) time (Berkey and Wang, 1982).
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One-phase algorithms (2BPP and 2SPP)
• Main non-shelf strategy:

Bottom-Left (BL): pack the current item in the lowest possible position, left justified.

1
2

3

4
5

• Complicated O(n2) time implementation (Chazelle).

• Worst-case performance for the 2SPP (Baker, Coffman, and Rivest, 1980):

– if no item ordering is used, then BL may be arbitrarily bad;

– if the items are sorted by nonincreasing width, then

BL(I) ≤ 3 ·OPT (I) ∀ I (tight)
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Approximation algorithms and schemes

• Mostly theoretical relevance.

• Asymptotic approximability:

– First asymptotic fully polynomial-time approximation scheme for the 2SPP: Kenyon and

Remila (2000).

– Asymptotic fully polynomial-time approximation scheme for a restricted version of the

2BPP: Caprara, Lodi and Monaci (2002).

– Bansal and Sviridenko (2004): No asymptotic polynomial time approximation scheme

(APTAS) can exist for the 2BPP unless P = NP .

– Best result: General framework for approximation algorithms: asymptotic approximation

guarantees arbitrarily close to 1.525 for the 2BPP (Bansal, Caprara and Sviridenko,2006)

• Absolute approximability:

– Zhang (2005): 3-approximation algorithm for the 2BPP;

– Harren and van Stee (2009): 2-approximation algorithm for the 2BPP;

best possible polynomial time approximation for 2BPP, unless P = NP .

– Harren, Jansen, Prädel, and van Stee (2014): 5
3 + ε-approximation algorithm for the 2SPP.
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Lower bounds

Continuous Lower Bound

• 2BPP: L0 =

⌈∑n
j=1 hjwj

HW

⌉
;

– L0(I) ≥ 1
4 ·OPT (I) ∀ I. Tight:

H
2

W
2

• 2SPP: L0 =

⌈∑n
j=1 hjwj

W

⌉
;

– Arbitrarily bad! (n = 1, w1 = 1 h1 = W : L0 = 1, z = W );

– better bound: L0 = max(L0,maxj=1,...,n{hj});

– L0(I) ≥ 1
2 ·OPT (I) ∀ I (Tight) (Lodi, Martello, Monaci, Vigo 2003).

• Other lower bounds derived from the from the (one-dimensional) BPP.
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Exact Algorithms

2BPP:

• Nested branch-and-bound algorithm (Martello & Vigo, 1998). Depth-first strategy:

– outer tree (from the 1BPP): items assigned to bins without specifying their actual position:

at level k, item k is assigned, in turn, to all active bins and, possibly, to a new bin;

– inner tree: find a a feasible packing (if any) for the items assigned to the bin through

∗ approximation algorithms (the packing is feasible if z = 1);

∗ lower bounds (no packing exists if LB > 1); if these fail,

∗ enumeration of all possible patterns.

• Branch-and-price algorithms:
Pisinger and Sigurd (2007): decomposition + constraint programming;

• Enumerative approach for the single bin 2BPP (Fekete, Schepers, and van der Veen (2007));

2SPP :

• Branch-and-bound algorithm: (Martello, Monaci, and Vigo (2003));

improvements by Boschetti and Montaletti (2010).

• 2SPP with 90◦ item rotation (Stock Cutting Problem):

– branch-and-bound algorithm (Arahori, Imamichi, and Nagamochi (2012);

– Benders’ decomposition (Delorme, Iori, and Martello (2017).
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Three-dimensional packing problems (brief outline)
• Given n rectangular-shaped boxes with integer height hj, width wj, and depth dj ...
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• ... and an unlimited number of identical rectangular 3-dimensional bins having height H,
width W and depth D, orthogonally pack all the boxes into the minimum number of bins

(Three-Dimensional Bin Packing Problem, 3BPP):
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• ... and a single open-ended strip of width W , depth D, and infinite height, orthogonally

pack all the boxes by minimizing the height to which the strip is filled (Three-Dimensional
Strip Packing Problem, 3SPP).
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Three-dimensional packing problems (brief outline)

• Complexity: obviously NP-hard in the strong sense.

• Applications:

– Loading: containers, vehicles (trucks, freight cars), pallets;

– Packaging design: boxes, cases;

– Cutting: foam rubber (arm-chair production).

• Variants and additional constraints:

– Guillotine cuts:
�
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6

non guillotine-cuts
– Boxes rotation;

– Layers;

– Limit on superposed weights;

– Stability of the load . . .
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It’s been a long trip through packing

Thank you for your attention
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